Nasal products – current and new methods for characterisation

Prof. Dr. Regina Scherließ Kiel University, Germany

APS workshop Nasal Biopharmaceutics

December 7th 2022, Edinburgh

Nasal drug delivery - opportunities

- Attractive for local and systemic delivery of drugs
 - Easily accessible
 - Non-invasive administration
 - Essentially painless
 - Good absorption
 - Rapid onset of action
 - No gastro-intestinal degradation/hepatic first-pass metabolism
- Local treatment (e.g. α-sympathomimetics, corticosteroids)
- Systemic treatment (e.g. desmopressin, calcitonin, fentanyl, sumatriptan, naloxone)
- Vaccination
- Nose-to-brain?

Nasal products

Nasal drops

Nasal sprays

solution

suspension

Nasal powders

Local effect
Systemic absorption
CNS targeting

Characterisation of nasal products

(Compendial) characterisation of nasal products

- Nasal preparations (Ph.Eur. 11.0/0676)
 - Uniformity of delivered dose
 - Number of deliveries
 - Leak rate

Delivered dose collection

(Compendial) characterisation of nasal products

- FDA Guidance for Industry: Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products — Chemistry, Manufacturing, and Controls Documentation (2002), e.g.:
 - pH, osmolarity, viscosity
 - Pump delivery, pump spray weight
 - Spray performance (content uniformity, plume geometry, spray pattern)
 - Droplet size distribution incl. percentage <10 μm
- EMA guideline on the pharmaceutical quality of inhalation and nasal products (2006), e.g.:
 - vast majority of the particles / droplets shall be larger than 10 microns

Nasal product specific tests

- Plume geometry
- Spray angle and pattern
- Deposition in a cast model

Regional nasal deposition - casts

Kundoor, Dalby, 2010

... pulmonary deposition?

Trows, S., Scherließ, R., 2016. Carrier-based dry powder formulation for nasal delivery of vaccines utilizing BSA as model drug Powder Technology 292, 223-231

Impactor measurements in nasal testing

- For the quantification of mass fraction below 10 μm
- Prerequisites/expectations
 - Simple cut between larger 10 μm and smaller 10 μm required
 - No assessment of fine particle dose < 5 μm
 - No need for numerous particle size classes below 10 µm
 - Nasal adapter with air bypass (no vacuum/sucking from device)
 - Inlet port allowing vertical and tilted spraying (as per patient information for use)
 - Precise capture of dose (mostly liquid, > 100 μl)
 - Suitable for different products, types of products

Experimental setups

Mass fraction < 10 μm

Poster No. 37

Figure 2 - Comparison of impactors. Fraction and recovery reported as percentage of determined emitted dose. Inlet: glass expansion chamber, one spray shot per assessment. (n=3, error bars=SD)

Figure 3 - Comparison of different inlets. Fraction and recovery reported as percentage of determined emitted dose. Fast screening impactor, one spray shot per assessment. (n=3, error bars=SD)

Kiel Nasal Inlet

Drawings by H.Wachtel, BI

The Tech4Nose concept

MSCA DN application of CAU, KCL, UPR, UBR, ULB, BSC, LUN, NAN

Own perspective/open questions for the audience

- Current quality methods fail to account for actual use of a nasal product
- New models needed for QbD-driven development of new nasal products
- Validation across models needed
- How can nasal dose collection be standardised?
- What is the link between regional deposition and effect?
- Is a (standardised) nasal cast model useful?
- What can particle sizing tell us about effect/side effect?

Prof. Dr. Regina Scherließ

Kiel University

Department of Pharmaceutics and Biopharmaceutics

Grasweg 9a

24118 Kiel, Germany

e-mail: rscherliess@pharmazie.uni-kiel.de

phone: +49 431 880 1330

