

Pulmonary delivery of siRNA targeting EGFR and PD-L1 in in vivo traceable NSCLC models

Rico Chi Hang Man^{1,2}, Susan Wai Sum Leung¹, Jenny Ka Wing Lam^{1,3} & Gilbert O. Fruhwirth²

¹ Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR ² School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom ³ Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, United Kingdom

Background

- □ Non-small cell lung cancer (NSCLC) is a leading cause of mortality worldwide, resulting in a heavy burden on the healthcare system.
- Over-expression of epidermal growth factor receptor (EGFR) and programmed death-ligand 1 (PD-L1) are frequently observed in NSCLC, in which EGFR promotes tumour survival and PD-L1 prevents cancer cells from immune detection [1].
- ☐ The small interfering RNA (siRNA)-based therapies emerge as a novel and and attractive anti-cancer therapeutic approach [2].
- ☐ Different in vivo traceable NSCLC cell lines are engineered to track the tumour progression and evaluate the therapeutic efficacy following pulmonary delivery of siRNAs targeting EGFR and PD-L1 [3].

Aims

- ☐ To engineer and validate *in vivo* traceable NSCLC cell models which express either luciferase (for 2D bioluminescence imaging) or NIS-TagRFP (sodium iodide symporter reporter gene coupled with a fluorescent protein for 3D radionuclide tomography).
- ☐ To investigate the efficiency of siRNAs in inhibiting EGFR and PD-L1 expressions in the established NSCLC cells.
- ☐ To explore the effectiveness and safety of pulmonary delivery of siRNA therapeutics to the lungs.

Methods

1. Engineering of in vivo traceable NSCLC cell lines by lentivirus-mediated gene transfer

3. Effectiveness of pulmonary siRNA delivery to the lungs

confirmation of reporter

knockdown efficiency

by western

immunoblotting

PEG₁₂ EGFR & PD-L1 reduction **!**

♀ BALB/c mice 10 µg fluorescent siRNA by Mircosprayer

488888

(The animal work was approved by Committee on the Use of Live Animals for Teaching and Research, HKU)

Results

Establishment of in vivo traceable NSCLC cell models

Parental H1975 H1975-luciferase Nucleus Luciferase

■ Figure 1. Representative confocal microscopy images of H1975 cells expressing firefly luciferase and NIS-TagRFP reporter gene. (Upper panel) The parental and luciferase-expressing cells were stained with primary firefly luciferase antibody, followed by secondary antibody staining with AlexaFluor488 dye. (Lower panel) Analysis of subcellular reporter localisation: plasma membrane was visualised with WGA conjugated to AlexaFluor488 dye and NIS-TagRFP by its intrinsic red fluorescence. Scale bar = $20 \mu m$.

Knockdown efficiency of EGFR & PD-L1 using PEG₁₂-KL4 as a delivery vector

(i) H1975-luciferase cells

gene expressions by

confocal microscopy

EGFR knockdown

Ctrl Mock

PD-L1 knockdown

(ii) H1975.NIS-TagRFP cells

EGFR knockdown

PD-L1 knockdown

▼ Figure 2. The knockdown effects of EGFR and PD-L1 using a synthetic delivery vector, PEG₁₂-KL4 peptide in H1975-luciferase and H1975.NIS-TagRFP cells. The cells were transfected with PEG₁₂-KL4 only (mock control), EGFR or PD-L1 siRNA (+) or scramble siRNA (-) at 50, 75 or 100 nM. At 48-h post-transfection, EGFR or PD-L1 and GAPDH (as an internal control) protein expressions analysed by western were immunoblotting.

Pulmonary delivery of fluorescent siRNA 4-h post intratracheal administration

▲ Figure 3. Biodistribution of DY-547 fluorescently labelled siRNA following intratracheal administration. Female BALB/c mice were administered intratracheally with (i) PBS, (ii) naked siRNA or (iii) PEG₁₂-KL4/siRNA complexes containing 10 μg siRNA in 75 μL PBS using Microsprayer® Aerosolizers. At 4 h post-administration, the lung, liver, kidneys and spleen tissues were isolated and the DY-547 red fluorescence signal of the tissues was measured (n=2).

Conclusions

- ☐ H1975 cells expressing firefly luciferase or NIS-TagRFP were successfully established.
- ☐ A significant EGFR and PD-L1 knockdown was attained using PEG₁₂-KL4 peptide as a delivery vector in the established cell lines.
- ☐ Intratracheal administration was a reliable and effective method to achieve high siRNA localisation in the lungs.

Key messages

This study demonstrates successful engineering of two in vivo traceable H1975 cell models. They now serve as a tool to visualise and evaluate the anti-tumour effects of EGFR and PD-L1 dual inhibition by siRNAs.

Acknowledgement

This financially supported by General Research Fund, Research Grant Council

(GRF 17300319).

References

- [1] Azuma K et al. Ann. Oncol. 2014, 25(10), 1935-1940. [2] Zhang M et al. Biochem. Pharmacol. 2021, 189, 114432.
- [3] Volpe A *et al*. Mol. Ther. 2020, 28(10), 2271-2285.