

An *in vitro* exposure platform for investigating bacterial and epithelial cell responses to aerosolized phage challenge.

Mathura Thirugnanasampanthar^{1,2}, Michelle Feng^{1,3}, Fereshteh Bayat^{1,4}, Rod G Rhem⁵, Myrna B Dolovich^{1,5,6} & Zeinab Hosseinidoust^{1,2,4,7}

ENGINEERING
Chemical Engineering

¹McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada

²Department of Chemical Engineering, ³Department of Electrical Engineering, ⁴School of Biomedical Engineering

⁵St. Joseph's Healthcare, Firestone Research Aerosol Laboratory, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada

⁶Faculty of Health Sciences, Department of Medicine, ⁷Michael DeGroote Institute for Infectious Disease Research

INTRODUCTION

Pseudomonas aeruginosa is a bacterial pathogen responsible for chronic respiratory infections in cystic fibrosis (CF) patients.¹ Bacteriophages (also known as phages) are viruses that infect bacteria. Phages are promising alternatives to antibiotics for treating drug resistant bacterial infections.¹,² Investigations with aerosolized phage are limited and primarily focus on proof-of-concept demonstrations with animal models.² We have developed a platform for conducting phage aerosol exposure studies using *in vitro* cultures of bacterial and airway epithelial cells.

AIM

To determine if our platform is suitable for probing cellular responses to aerosolized phage challenge we investigated:

- 1. Bacterial responses to aerosolized phage.
- 2. Calu-3 airway epithelial cell responses to aerosolized phage.
- 3. Bacterial and epithelial cell responses to airflow exposure within the aerosol platform.

MATERIALS

Figure 1 – (A) Aerosol platform; (B) Calu-3 cells; (C) Bacterial cells; (D) Phage virion.

C Bacterial cells 10 μm

METHODS

RESULTS

Figure 2 – Absorbance value reflects the number of viable bacterial cells. Airflow exposure alone did not alter bacterial viability. However, phage exposure significantly reduced bacterial viability.

Figure 4 – Bacterial cells were stained with equal parts Syto9 (Live) and propidium iodide (Dead). Live cell density following phage exposure is significantly reduced, indicative of phage-mediated lysis.

Figure 3 – FITC-dextran leakage from transwells was used as an indicator of permeability. Epithelial cell permeability values were not altered by airflow or airflow + phage exposure conditions.

Blue stain = Live epithelial cells Green stain = Dead epithelial cells

Figure 5 – Airway epithelial cells were stained with equal parts DAPI (Live) and NucGreen™ (Dead). Airflow and phage exposure did not alter the viability of epithelial cells.

SUMMARY

- Bacterial viability was significantly reduced following phage exposure.
- 2. Epithelial cell barrier integrity and viability was not altered by phage exposure.
- 3. Airflow exposure had negligible effects on bacterial and epithelial cell cultures.

CONCLUSION

Our platform can be used to evaluate bacterial and epithelial cell responses to aerosolized phage challenge.

REFERENCES

- 1. Hassett, Daniel J., et al. *Expert Opin. Ther.*
- Targets, 2010.

 Norello Frio et al PloS and 201
- Morello, Eric, et al. *PloS one*, 2011.
 Thirugnanasampanthar, Mathura, et al. *DDL Conference*, 2022.

Contact: thirugm@mcmaster.ca www.biohybridslab.com

