Segregation and distribution of different particle sizes in the components of a capsule filling machine based on the vacuum drum filler for DPI applications

Isabel Gallego ${ }^{1,2}$, Thomas Brinz ${ }^{1}$ \& Martin Sommerfeld ${ }^{2}$

${ }^{1}$ Syntegon Technology GmbH, Waiblingen, Germany
${ }^{2}$ Institute of Process Engineering, Multiphase Flow Systems, Otto-von-Guericke-University Magdeburg, Germany

Introduction

-Dry powder inhalation (DPI) formulations are used to treat diseases by delivering the active pharmaceutical ingredient (API) to the lungs ${ }^{1}$. Capsules for DPI formulations can be filled with a vacuum drum, allowing doses as low as 1 mg to be filled.
-The GKF 720 capsule filling machine is mainly composed of a feeding station, a powder chamber with a stirrer and a vacuum drum with 4 lines, each with 5 bores. The powder is filled into the bores of the drum using vacuum, and then the drum rotates and ejects the powder with pressure to fill the capsules (Fig 1).
aDue to the low amount of powder dosage, accurate fill weight and uniform content of API in the capsules are critical ${ }^{2}$.

Methods

Materials: Lactose for inhalation (DFE-Pharma)
-Mix 1 (10\% LH100, 80\% LH206 and 10\% LH210)
aSmall (LH210) or big (LH100) particles were replaced with their respective tracer (lactose dyed with methylene blue)

-The powder chamber and vacuum drum of the GKF 720 (Syntegon Technology GmbH, Waiblingen, Germany) with a filling weight of 5 mg were used for the study.
-The powder chamber was filled with 120 g of Mix 1 and 25 dosages from each of the bores were collected every 5 minutes for 25 minutes. The powder was analysed using UV-Vis spectroscopy.
\square Different stirrers (Fig 3) were used to evaluate their influence on the segregation.

∇ Table 1. Overview of the machine parameters used for experiments	
Fixed parameters	
Machine speed	100 cycles/min
Stirrer speed	100 rpm
Stirrer rotation	to the right
Vacuum (drum)	-0.4 bar
Transfer pressure (drum)	0.4 bar

Results

\triangle Fig 4. Mean concentration in the line of bores of small (LH210) and big (LH100) particles over time with wire, spike and coreless stirrer ($\mathrm{n}=3 \pm$ standard deviation)

Δ Fig 5. Concentration of small particles (LH210) that come out of the bores of the vacuum drum over time with wire, spike and coreless stirrer ($n=3 \pm$ standard deviation)

Δ Fig 6. Concentration of big particles (LH100) that come out of the bores of the vacuum drum over time with wire, spike and coreless stirrer ($\mathrm{n}=3 \pm$ standard deviation)
\square By replacing the small or big particles with the blue tracer, it was possible to experimentally measure the concentration of a specific particle size that came out of the bores of the drum over time (Fig 4).
-When using the spike stirrer, the bigger particles came out of the bores first, and the smaller particles stayed in the powder chamber (Fig 4).
-It was found that there are statistically significant differences ($p<0.05$) in the concentration of small and big particles coming out of the bores when using different stirrers.
\square With this method, it was also possible to measure the concentration of small and big particles in each of the bores separately over time for the different stirrers (Fig 5 and Fig 6), allowing to determine the content uniformity in the capsules.

Conclusions

-With the help of a tracer, it was possible to measure the content uniformity of the powder coming out of the bores, to assess the segregation in the powder chamber.
-The type of stirrer used in the powder chamber influences the segregation of particles of different sizes, showing statistically significant differences.
-This method will help ensure uniform API content in DPI capsules.

Future work

םOther types of stirrers are going to be investigated, as well as other settings of the machine, such as machine speed, stirrer speed and powder bed height, among others.
alt is expected that in the future for each material, depending on its properties and particle size, the process will be optimized.

References

${ }^{1}$ L. Ding et al., Pharm. 2021; 13; p. 1213
${ }^{2}$ E. Faulhammer et al., Int. J. Pharm. 2014; 473(1-2); pp. 617-626

