Stability and Aerosol Performance of an excipient-free dry powder of Tigecycline for local delivery in lung infections

Varsha V. Nair¹, Hugh D.C Smyth¹

¹The University of Texas at Austin, 2409 University Avenue, Austin, 78705, USA

Background

 Lower respiratory tract infections are the 4th leading cause of death across the world ¹.

Figure 1: Transmittable diseases causing the biggest health burdens

Figure 2: Annual global mortality projected for 2050

- Tigecycline (TIG) is a broad-spectrum glycylcycline antibiotic that is susceptible to a wide variety of infections including Streptococcus pneumonia, non-tuberculosis mycobacteria, and Stenotrophomonas maltophilia².
- Currently, TIG is only available as a lyophilized powder for injection for the treatment of skin and abdominal infections and is only stable for a maximum of 48 hours once reconstituted ^{3,4}.
- The labelled dose of TIG is 100 mg initial dose followed by 50 mg every 12 hours ⁴. Pulmonary delivery of TIG will help reduce this dose to as low as 10 mg.

Research Goals

Figure 3: Comparison between the conventional and proposed processing methods ⁵ Commercial IV formulation of TIG is only stable for 6-48 hours after reconstitution. The proposed method will utilize a dry-milling technique and test long-term storage stability for local delivery in the lung

Methods

Parameter	Measurement Technique	Method	
Micronization	Air Jet Mill	75 psi grind pressure, 65 psi feed pressure, and 1 g/min feed rate ⁶	
Particle Size	Laser Diffraction (HELOS RODOS)	Pressures from 0.5-3 bar	
Stability	Differential Scanning Calorimetry (DSC)	35-350° C at 10 degree/minute	
Crystallinity	Powder X-ray Diffraction (PXRD)	5 to 60 degrees at 2 degree/minute	
Aerosol Performance	Next Generation Impactor (NGI)	93 L/min at a pressure drop of 4 kPa	
6-month storage stability	DSC, PXRD, NGI, HPLC, TGA	Same as above	

12000

Results

Table 1: Geometric and Aerodynamic particle size of TIG powders				
Method	Parameter	Milled	Unmilled	
		At Day 0	At Day 0	
RODOS	Dv50 (μm)	2.76 ± 0.2	5.98 ± 0.7	
(0.5 bar)	DV30 (μπ)	2.70 ± 0.2	J.70 ± 0.7	
		1.90 ± 0.2		
NGI	Mass Median	At 6 months	$F \mathcal{I} A + O \mathcal{I}$	
(4 kPa)	Aerodynamic Diameter (MMAD) (µm)	25°C/60% RH: 1.6 ± 0.4	5.74 ± 0.7	
	(1·11·11 12) (politi)	$40^{\circ}\text{C}/75\% \text{ RH}: 1.3 \pm 0.1$		
		95.08 ± 0.08		
NGI	Fine Particle Fraction	At 6 months	31.70 ± 1.8	
(4 kPa)	(FPF) (%)	25° C/60% RH: 78.9 ± 0.9		
		$40^{\circ}\text{C}/75\%\text{RH}$: 73.5 ± 0.2		
NGI (4 kPa)	Emitted Fraction (EF) (%)	90.15 ± 0.1	90.20 ± 0.3	

- Dv50 for milled particles was half of the unmilled TIG particles at 0.5 bar
- The MMAD for unmilled powders was ~3-fold higher than that of milled powders at Day 0
- At Day 0, the EF remained high for milled and unmilled powders while the FPF was ~3-fold higher for milled powders
- The FPF and MMAD of milled powders remained comparable to Day 0 upon storage at accelerated and intermediate conditions for 6 months

- The HPLC data revealed that milled TIG powders remained stable upon processing and storage at intermediate (25°C/60% RH) and accelerated (40°C/75% RH) conditions for 6 months. All groups had a single peak at 4.9 minutes and no additional peaks were seen throughout the chromatogram indicating the absence of degradants (data not shown)
- PXRD and DSC analysis after processing and storage revealed that TIG remained crystalline and did not degrade at 6 months (Figure 4 A, 4B)
- The TGA analysis revealed that TIG is non-hygroscopic and has very little potential to adsorb moisture. The water content did not change and remained at zero for TIG powders upon storage and processing.

Conclusions

- TIG was successfully prepared as an excipient free, high dose dry powder for inhalation with enhanced aerosolization efficiency.
- It was found to be stable upon storage at 25°C/60%RH and 40°C/75% RH for 6 months and maintained its aerosolization efficiency.
- Additionally, TIG has little propensity to adsorb ambient moisture thereby protecting it from degradation upon storage even in high humidity conditions

References

- World Health Organization. WHO-Leading Causes of Death
- Noskin GA. Tigecycline: A New Glycylcycline for Treatment of Serious Infections [Internet]. Vol. 41, Clinical Infectious Diseases. 2005. Available from: https://academic.oup.com/cid/article/41/Supplement 5/S303/288990

for injection 50mg vial Wyeth Pharmaceuticals, Division of Pharmaceutical Evaluation III, Division of AntiInfective Drug Products. 2004

- 3. Tworzyanski JJ, Yaning Wang PP, Jarugula VR, Joga Gobburu P. Clinical Pharmacology & Biopharmaceutics Review NDA# 21-821 Tigecycline (TygacilTM) Sterile Powder
- 4. FDA. sp; HIGHLIGHTS OF PRESCRIBING INFORMATION [Internet]. Available from: www.fda.gov/medwatch 5. Nair V, Smyth HD. A High Dose Dry Powder Formulation for an Unstable Antimicrobial Active Pharmaceutical Ingredient. Respiratory Drug Delivery 2022. Volume 1, 2022:

6. Brunaugh AD, Jan SU, Ferrati S, Smyth HDC. Excipient-Free Pulmonary Delivery and Macrophage Targeting of Clofazimine via Air Jet Micronization. Molecular Pharmaceutics. 2017 Nov 6;14(11):4019–31.