Understanding the Transient Flow Behaviour of Abbreviated Impactors for Testing of DPIs

Wolfson School of Mechanical, Electrical and Manufacturing Engineering

HK Versteeg¹, DL Roberts², A Cooper³, J Mitchell⁴

1Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, UK

2Applied Particle Principles LLC, 17347 Westham Estates Court, Hamilton, VA 20158, USA ³Kindeva Drug Delivery, Derby Road, Loughborough, LE11 5SF, UK

⁴Jolyon Mitchell Inhaler Consulting Services Inc., 1154 St. Anthony Road, London, N6H 2R1, Canada

1. Background/context of the research

- Abbreviated impactors (AIM): reduced NGI (rNGI), Fast Screening Impactor (FSI), Fast Screening Andersen (FSA).
- Two particle size fractions only: (i) above & (ii) below chosen aerodynamic cut point (D_{50}) .
- Simple characterisation for quality control and for fast screening of candidate pMDI or DPI formulations in R&D.
- Start-up kinetics of transient air flow may cause small differences in fine particle dose of breath-actuated DPI products measured by AIM apparatuses and full-stack impactors (NGI/ACI) (Refs. [1]-[4]).

2. Study objectives

- Develop numerical model of start-up of air flow through AIM impactors.
- Validate method by comparison of model predictions with preliminary experimental dataset reported in companion paper (Ref. [7]).
- Identify main factors controlling air flow rise time t_{90} .

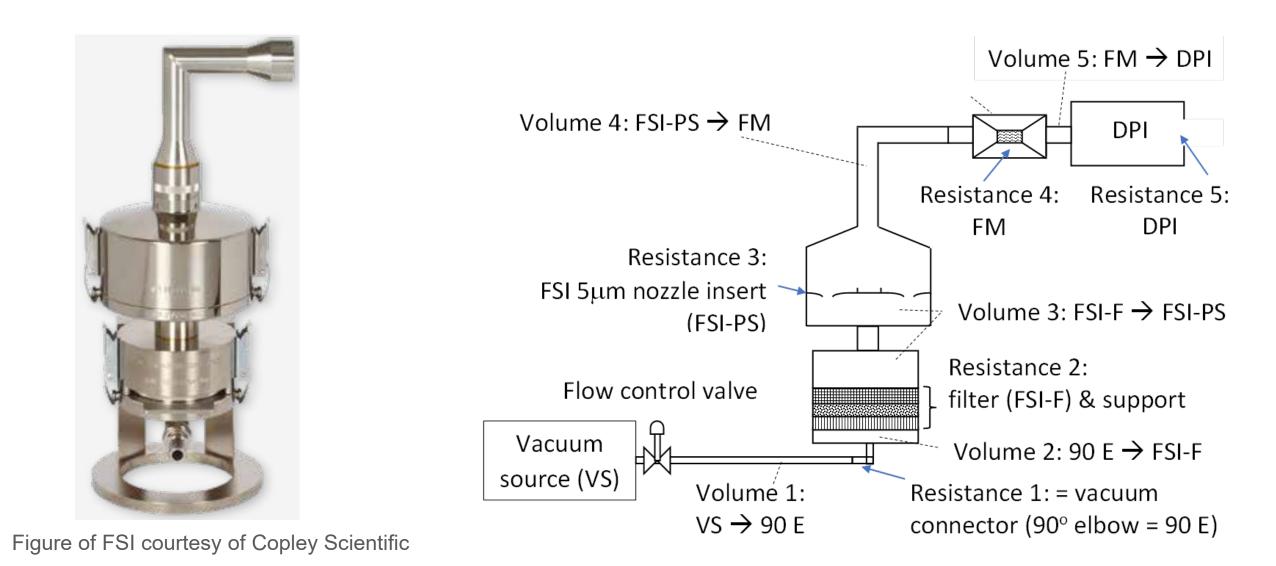


Figure 1 – Representation of FSI as system of chambers and resistances

4. Results & discussion

- System parameters for AIM and full-stack impactors obtained from impactor system chamber volumes and measured or estimated resistance P_i-P_{i-1}. (see Table 1).
- Processed model results: non-dimensional mass flow rate vs. non-dimensional time for FSI at steady state flow rate of 60 l/min (see Fig. 2).
- Monotonic increase of flow rate vs. time for all impactor systems.
- Rise time t_{90} for flow into the DPI inlet: (i) find $t_{90}/t_{ref} = 1.36$ corresponding to $Q/Q_{ss} = 0.9.$
- Model parameters for FSI \rightarrow reference time t_{ref} = 96 ms \rightarrow t_{90} = 130 ms.
- Table 2 gives model predictions of t₉₀ for NGI, rNGI, ACI, FSI and FSA for steady state flow rates $Q_{ss} = 30$, 60 and 90 l/min.
- Figure 3 compares the model predictions of t₉₀ with experimental data.
- Rise time t₉₀ trends correlate with impactor volumes (see results in Tables 1 & 2).
- Rise time t₉₀ decreases as flow rate increases. Ref [7] has shown that this is caused by the higher resistance of DPIs tested at low flow rates.

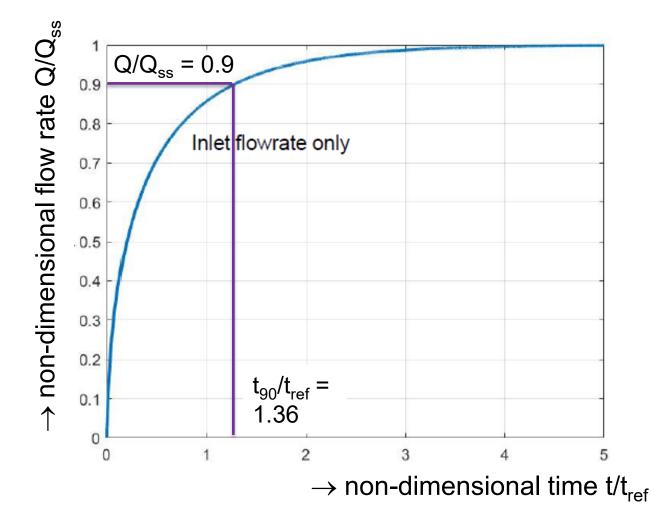


Figure 2 – Non-dimensional flow rate into DPI vs. non-dimensional time FSI - steady state flow rate 60 l/min

3. Method

- Conceptual model (see Fig. 1): flow behaviour is studied through a system of chambers (e.g. USP-IP, pre-separator, filter holder) separated by concentrated resistances (impactor nozzles, DPI).
- Mathematical model: (i) rate of change of pressure P_i in chamber i as function of chamber volume P_i and mass flow rates \dot{m}_i through resistances $\frac{dP_i}{dt} = \left(\frac{RT_{\infty}}{V_i}\right)(\dot{m}_i - \dot{m}_{i-1})$ (ii) pressure difference $P_i - P_{i-1}$ as function of mass flow rate and open area: linear losses (e.g. filter) $P_i - P_{i-1} = \frac{C_l}{A\rho} \dot{m}_i$ quadratic losses(e.g. nozzles) $P_i - P_{i-1} = \frac{C_q}{A^2 \rho} \dot{m}_i^2$
- Non-dimensionalisation yields system of ordinary differential equations (ODEs) for non-dimensional chamber pressure vs. non-dimensional time.
- Numerical approach: system of ODEs is solved in Matlab^(R).

5. Conclusions

- Predictions show that rise time t₉₀ is longest for rNGI and shortest for FSA and are related FSA < FSI ≈ ACI < NGI < rNGI (see Fig. 3).
- Effect of system volume and steady state flow rate: model correctly predicts trends of rise time t₉₀ vs. impactor system volume & steady state flow rate.
- Understanding: rise time t₉₀ is proportional to the time to evacuate air from the impactor system volume to reduce the pressure by 4 kPa caused by the surrogate DPI resistance; this takes longer when the impactor system volume is larger or the flow rate is smaller.
- Discrepancies model predictions & experiments: (i) uncertainties in system component volumes and ΔP , (ii) unknown experimental issues.
- Further work: resolve differences & complete system understanding (in progress).

Table 1. Impactor Volume and Model-Predicted Pressure Drop at Steady-State Conditions

Impactor volume (cm ³)	1990	1980	1150	1180		630
Predict	ted steady-	state press	ure drop (k	Pa) across im	pactor systen	n
Q _{ss} (L/min)	NGI	rNGI	FSI	ACI		FSA
				28.3 l/min config.	60.0 l/min config.	28.3 l/min config.
30	6.9	8.3	5.6	10.0	6.1	5.3
60	15.6	19.1	7.6	26.4	10.6	6.7
90	31.5	38.3	10.2	56.4	17.7	8.1

Table 2. Predicted Time t_{90} (ms) to Reach 90% of Steady-State Air Flow Rate

Q _{ss} (L/min)	NGI	rNGI	FSI	ACI	FSA
30	456	489	249	252	147
60	266	302	131	153	77
90	212	244	93	101	54

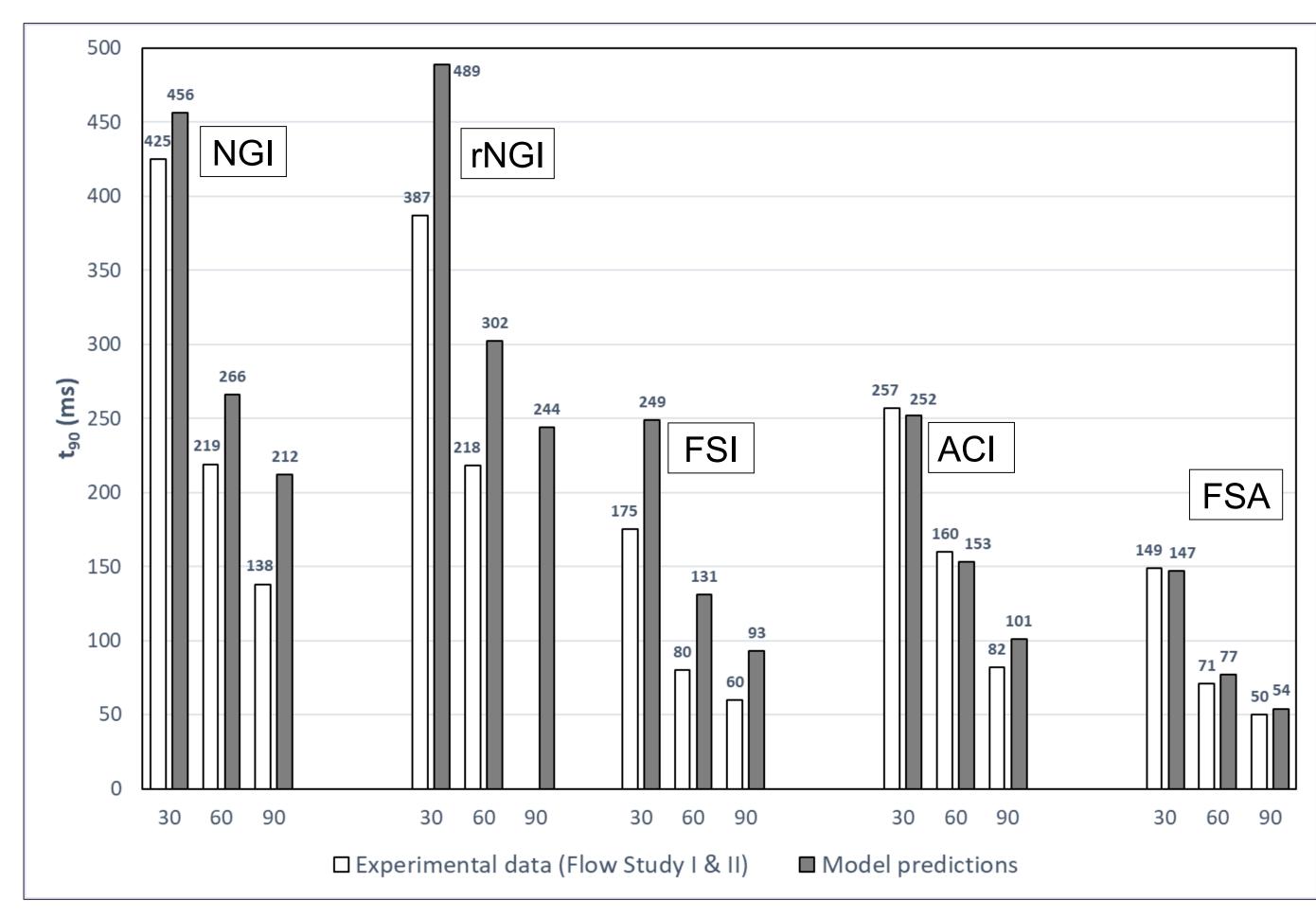


Figure 3 – Model Predictions and Experimental Measurements of Rise Time t₉₀

REFERENCES

391-395.

1. Copley M. et al, Good Cascade Impactor Practices, AIM and EDA for Orally Inhaled Products. Springer, Boston, MA, 2013: 283-357.

2. Russell-Graham, D. et al, Drug Delivery to the Lungs 21. The

Aerosol Society, Edinburgh, UK. 2010: 374-377.

- Mohan M. et al, AAPS PharmSciTech, 2017; 18(5): 1585-1594. 5. Greguletz R. et al, Aerosol Sci Technol., 2020; 54(12): 1424-
 - 6. Versteeg, H.K. et al, Aerosol Sci Technol., 2020; <u>54</u>(12): 1448-
- 3. Pantelides P.N. et al, Respiratory Drug Delivery-Europe 2011: 7 Mitchell J.P. et al, Poster #30, Drug Delivery to the Lungs 2022, The Aerosol Society, Edinburgh, UK, December 7-9, 2022.

ACKNOWLEDGEMENTS

This study was undertaken cooperatively by members of the Impactors Sub-Team of the European Pharmaceutical Aerosol Group (EPAG). The authors gratefully acknowledge permission from EPAG to publish these findings.