Locust bean gum microparticles as carriers for lung delivery of bacterial lysates Joana Pinto-da-Silva^{1#}, Joana Cruz^{1,2#} & Ana Grenha^{1,2} ¹Centre for Marine Sciences, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal ²Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus Gambelas, Faro, 8005-139, Portugal [#]equally contributing authors ## Key message Aerodynamically suitable microparticles containing bacterial lysates aimed at preventing respiratory infections can be obtained by spray-drying # Background - The prevention of respiratory infections is an important goal in public health - Bacterial lysates (BL) are often prescribed as parenteral immunomodulators¹ - Poor mucosal immunity has challenged their use and called for better efficacy¹ - The inhalation of BL can potentially provide improved immunization # Strategy - Inhalable spray-dried locust bean gum (LBG) microparticles (MP) are the proposed antigen carriers for delivering BL to the lungs - LBG is a galactomannan with high affinity for macrophages², possibly owning to its mannose content - Potential interaction with mannose surface receptors of antigen presenting cells populating the bronchus-associated lymphoid tissue is expected³ - The induction of an immune response in the local infection site coupled with a systemic effect is anticipated #### **Spray Drying Yield** Spray Drying Yield (%) = $\frac{\text{Product microparticles weight}}{\text{Total solids weight in feed}} \times 100$ #### Association Efficiency (AE) and Loading Capacity (LC)* *AE and LC calculated based on protein quantification using the Bradford protein assay $$AE (\%) = \frac{\text{loaded BL mass}}{\text{theoretical BL protein mass}} \times 100$$ $LC (\%) = \frac{loaded BL protein mass}{total MP mass} \times 100$ Morphology: scanning electron microscopy (SEM) at 60 L/min with Aerodynamics: Andersen cascade impactor (ACI) at 60 L/min with a high resistance RS01® inhaler **Cytotoxicity:** MTT assay in A549 cells 24h exposure ## **Results and Discussion** #### Microparticle characterization (mean ± SD) | Microparticles
LBG:BL (w/w) | Spray Drying
Yield (%) | Association
Efficiency (%) | Loading
Capacity (%) | Feret Diameter
(µm) | |--------------------------------|---------------------------|-------------------------------|-------------------------|------------------------| | 10:0.2 | 60 ± 4 | 81 ± 7 | 1.9 ± 0.2 | 3.62 ± 4.93 | | 10:0.7 | 60 ± 6 | 72 ± 3 | 2.8 ± 0.1 | 7.17 ± 5.27 | | 10:1.2 | 56 ± 2 | 56 ± 2 | 2.7 ± 0.1 | 7.09 ± 5.35 | # Morphological evaluation #### **Aerodynamic parameters** | Microparticles
LBG:BL (w/w) | MMAD
(µm) | FPF (%) | GSD (µm) | |--------------------------------|---------------|----------------|-----------------| | 10:0.2 | 4.6 ± 0.4 | 29.0 ± 3.8 | 1.89 ± 0.05 | | 10:0.7 | 7.4 ± 0.3 | 13.6 ± 0.5 | 1.78 ± 0.23 | | 10:1.2 | 8.1 ± 4.0 | 11.9 ± 2.7 | 1.52 ± 0.07 | FPF: fine particle fraction; GSD: geometric standard deviation; MMAD: mass median aerodynamic diameter #### Conclusions Bacterial lysates were successfully microencapsulated by spray-drying, with adequate association efficiency. The produced microparticles are not aggregated and exhibit a convoluted shape. Microparticles LBG:BL = 10:0.2 (w/w) present appropriate aerodynamic characteristics for inhalation while also displaying an adequate toxicological profile. #### References - 1.Kearney S et al., Ann. Allergy Asthma Immunol. 114, 5 (2015) - 2.Rodrigues S et al., Int. J. Pharm. 529, 1-2 (2017) - 3.van Helden S F G et al., Immunol. Lett. 117, 2 (2008) - 4.Braz L *et al.*, *Int. J. Biol. Macromol.* 96 (2017) # Acknowledgements