

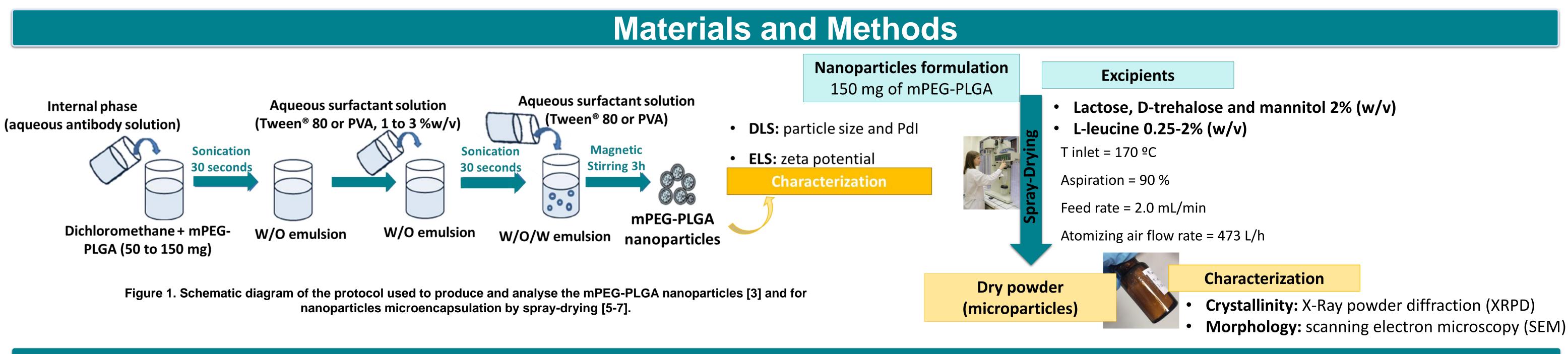
Microencapsulation of mPEG-PLGA Nanoparticles for Potential Inhalable Anticancer Therapy

Cláudia Viegas^{1,2,3,4}, João P. Lourenço⁵, Ana Grenha², Pedro Fonte^{2,3,4}

¹Faculdade de Medicina e Ciências Biomédicas (FMCB), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal ²Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal

³IBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal ⁴Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal ⁵Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal Corresponding authors: viegas.claudiasofia@gmail.com, amgrenha@ualg.pt, prfonte@ualg.pt

UAlg FMCB



Introduction

Lung cancer has a high mortality rate among all common cancers [1]. Conventional lung cancer therapies are usually administered intravenously with low selectivity for tumor cells and severe side effects [2]. Therapeutic antibodies are used as an alternative or in combination with chemotherapy, demonstrating benefits due to their high specificity and low toxicity [3].

The encapsulation of antibodies into nanoparticles and its pulmonary delivery is a promising strategy which combines targeted and controlled drug delivery with the ability to protect antibody structure and bioactivity, improving lung cancer treatment [4].

Thus, the aim of this work was the development and optimization of mPEG-PLGA nanoparticles to reach optimal features for future therapeutic antibody loading and the microencapsulation of nanoparticles by spray-drying to obtain a dry powder suitable for inhalable lung cancer treatment.

Results and Discussion

Production and optimization of mPEG-PLGA nanoparticles C. Zeta Potential A. Particle size B. Pdl < 0.27

Figure 2. Surface response plots for the dependent variables (A), (B), and (C) as a function of the effect of mPEG-PLGA mass and %Tween®80 (by a Design-of-Experiments approach).

Optimized nanoparticles are aimed at small particle size and good colloidal stability:

- Tween® 80 showed better particle stabilization than PVA.
- Optimal nanoparticle formulation (Table 1): 150 mg mPEG-PLGA and 1% Tween® 80.

Dry powder formulation

A. D-mannitol

Table 1. Formulation optimization by a DoE. Predicted value theoretical values of the responses for the best formulation features. Experimental value was obtained to confirm the predicted value

Experimental value was obtained to confirm the predicted value.						
Variables	Predicted value	Experimental value				
mPEG-PLGA mass (mg)	150	150				
% (w/v) Tween 80®		1				
Particle size (nm)		300 ± 10				
Pdl	0.233	0.358 ± 0.025				
Zeta potential (mV)		-24.0 ± 1.1				

Values are expressed as a mean \pm standard deviation (SD), n = 5.

B. Lactose C. D-trehalose A. D-mannitol

Figure 4. SEM images of spray-dried powders composed of the tested excipients (1% w/v). The scale bar represents 5 µm.

 D-mannitol microparticles showed a dry appearance after drying and had a crystalline structure, while lactose and D-trehalose presented humid and sticky aspect and amorphous structures.

Table 2. Composition of dry powder formulations, spray-drying operating parameters and yield.

Microparticles (Nps/Man/Leu,	Polymer	Polymer Excipients		Total solid content		Production yield (%)	
w/w)	mPEG-PLGA	D-mannitol	L-leucine	Nps+Exc	(°C)		
	% (w/v)*	% (w/v)*	% (w/v)*	% (w/v)			
20/80/0		2	-	2.5	127-126	7	
20/0/80		-	2	2.5	117-123	47	
14/57/29	0.5	2	1	3.5	123-126	59	
15/62/23		2	0.75	3.25	123-125	24	
18/73/9		2	0.25	2.75	103-107	23	
Exc: excipient(s); Leu: D-leucine; Man: D-mannitol; Nps: nanoparticles; *Final % in spraying dispersion. Higher obtained yield							

 D-mannitol was selected as the main excipient to proceed, but leucine was further added to improve the spray-drying yield (Table 2).

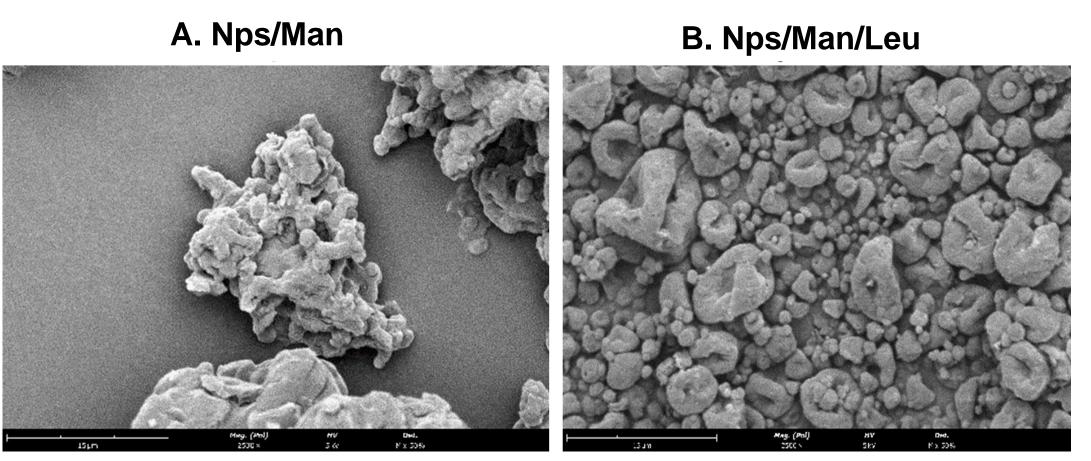


Figure 5. SEM images of spray-dried microparticles 20/80/0 (A) and 14/57/29 (B) (Nps/Man/Leu, w/w). Leu - D-leucine; Man - D-mannitol; Nps - nanoparticles. The scale bar represents 15 µm.

L-leucine decreases the inter-particulate forces and results in a low diameter, and also can lead to collapse during the inner water diffusion and evaporation [7].

2 theta (°) 2 theta (°) Figure 3. PXRD analysis of excipients and spray-dried (SD) excipients (1% w/v) powders.

Conclusions & Future work

B. Lactose

B. SD Lactose 1%

A. Lactose

The optimized nanoparticles formulation is produced with 150 mg mPEG-PLGA and 1% Tween® 80.

- Studies to convert nanoparticles into inhalable dry powders are being conducted with Dmannitol and L-leucine allowing reduction of particle agglomeration after spray-drying and satisfactory spray-drying yields.
- Further studies will be done in order to optimize the spray-dried microparticles and the antibody encapsulation keeping its structure and bioactivity.

References:

- 1. Siegel, R.L., et al..; Cancer Statistics. 7 (2021).
- 2. Mangal, S., et al.; Acta Pharmacologica Sinica. 38 (2017).
- 3. Zahavi, D., *et al.*; Antibodies. 9 (2020).
- 4. Sousa, F., et al.; Scientific Reports. 7, 3736 (2017).
- 5. Guerreiro, F. et al.; Powder Technology. 342, (2019).
- 6. Marante T. et al.; Pharmaceutics. 29;12 (2020).
- 7. Ordoubadi, M., et al.; International Journal of Pharmaceutics. 592, 120102 (2021).

Acknowledgments:

C. D-trehalose

2 theta (°)

B. SD D-trehalose 1%

A. D-trehalose