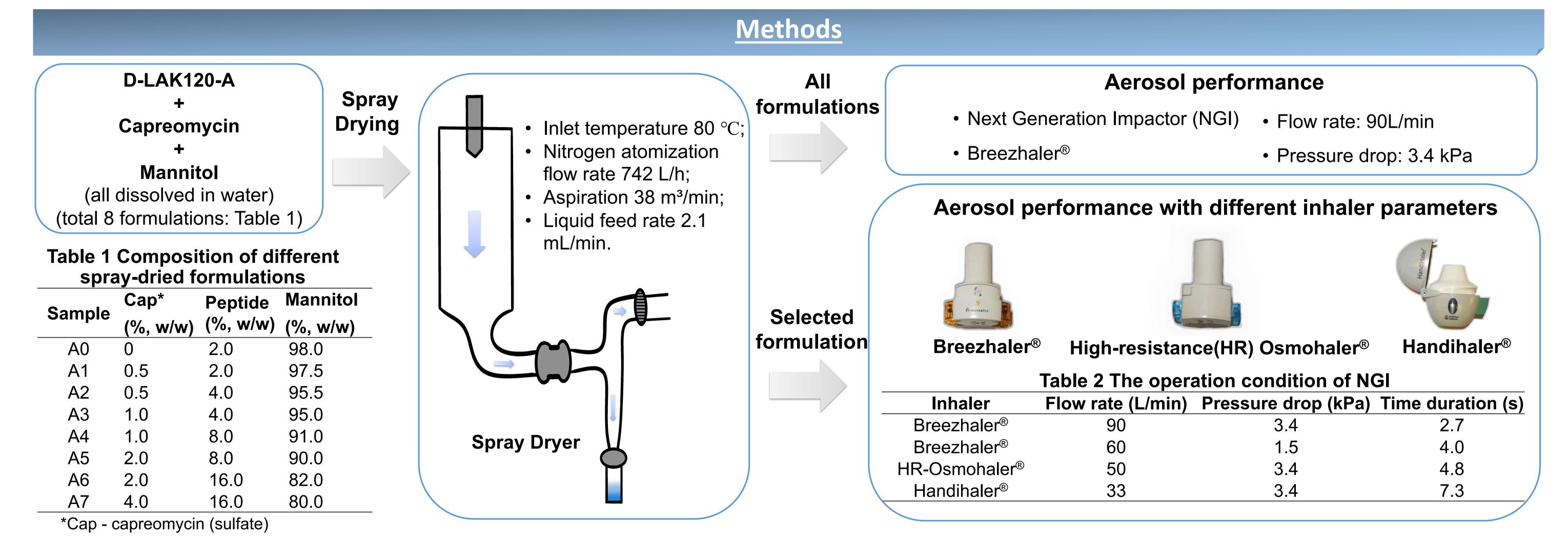


Effect of Inhaler Parameters on the Aerosol Performance of D-LAK Peptide/Capreomycin Co-spray Dried Powder for Pulmonary Delivery

LKS Faculty of Medicine Department of Pharmacology & Pharmacy 香港大學藥理及藥劑學系

Zitong Shao¹, Shing Fung Chow¹ and Jenny K.W. Lam^{1, 2,*}

Email: u3006730@connect.hku.hk


¹Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicines, The University of Hong Kong, Hong Kong SAR, China ² Department of Pharmaceutics, UCL School of Pharmacy, University College London, UK

Introduction

- Tuberculosis (TB) is an infection disease caused by *Mycobacterium tuberculosis (Mtb)*. It mainly affects the lung. Drug-resistant TB becomes a global challenge^[1].
- D-LAK120-A peptide is a synthetic antimicrobial peptide with anti-TB activity^[2]. Capreomycin is a second-line antibiotic combating drug-resistant *Mtb*. Previous study suggested that D-LAK120-A peptide could potentiate the efficacy of capreomycin when used in combination^[3].
- Capreomycin and D-LAK peptide are not orally available. Delivery through the pulmonary route can achieve high drug efficacy with low systemic toxicity.

Aims

- This study aims to formulate capreomycin and D-LAK120-A peptide as inhalable dry powder by spray drying with different drug content and mass ratios.
- The effect of different dry powder inhalers (DPIs) and flow rates on their aerosol performance were investigated.

Results and Discussion

- In figure 1, all formulations had similar EF values of around 80% and similar FPF within 40~45% (Breezhaler®, 90 L/min).
- No noticeable correlation between the aerosol performance and total drug content, or the mass ratio of two drugs.
- More than 15% (with respect to the recovered dose) of powder deposited at the throat of NGI in most powder formulations.

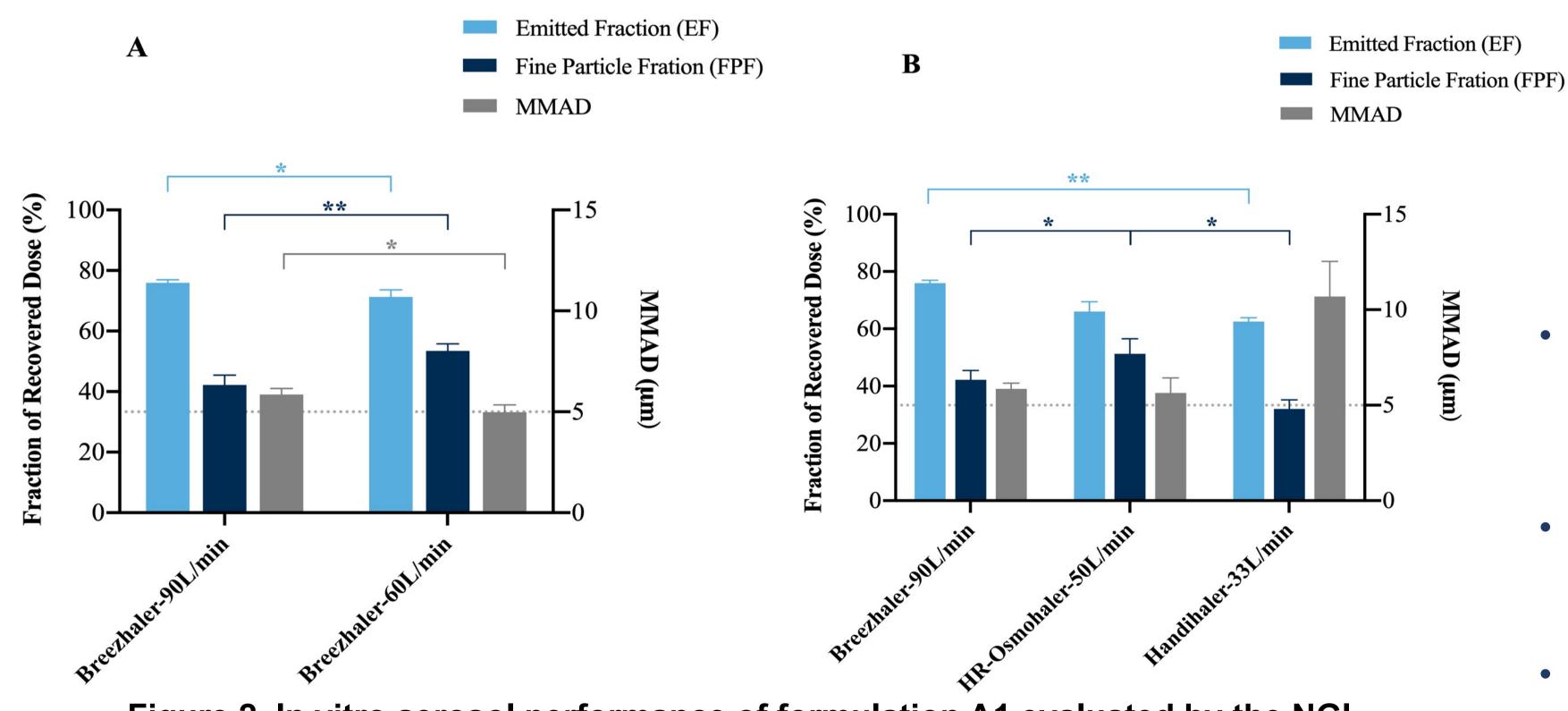


Figure 2 In vitro aerosol performance of formulation A1 evaluated by the NGI.

Figure 2A: Breezhaler® at 90 or 60 L/min. (Student t-test was applied);

Figure 2B: Breezhaler® at 90 L/min, HR-Osmohaler® at 50L/min and Handihaler® at 33L/min with the same pressure drop. (One-way ANOVA was applied.)

- MMAD: mass median aerodynamic diameter.
- o **EF**: emitted fraction, the percentage of the emitted dose with respect to the recovered dose.
- o FPF: fine particle fraction, the percentage fraction of fine particle (aerodynamic diameter less than 5.0 μm) dose with respect to the recovered dose.

Emitted Fraction (EF) Fine Particle Fration (FPF) 80 40 40 A0 A1 A2 A3 A4 A5 A6 A7

Figure 1 *In vitro* aerosol performance of all formulations evaluated by the NGI (Breezhaler® at 90 L/min)

- Formulation A1 dispersed at a lower flow rate using Breezhaler® had a significantly lower EF but higher FPF of over 50%. The MMAD was significantly smaller (below 5 μm) (Figure 2A).
- The EF of formulation A1 decreased as the flow rate decreased (Figure 2B). Using Handihaler® showed lowest EF, followed by HR-Osmohaler® and then Breezhaler®.
- The HR-Osmohaler® operated with a flow rate of 50 L/min showed the best higher FPF (around 50%) and the smallest MMAD.
- These spray dried particles need a high airflow rate to exit the capsule and inhaler. But a high airflow rate may laed to more inertial impaction losses in the proximal airways.

Conclusions

- The aerosol performance of powder formulations was affected by inhaled device and airflow rate but not the drug content or ratio of the two drugs.
- The HR-Osmohaler® was a suitable inhaler. It can generate a moderate airflow rate, leading to good powder emission from the capsule and inhaler, reduction of inertial impaction and a high FPF.

Acknowledgement

This study was financially supported by the Health and Medical Research Fund (HMRF 18170972), Hong Kong SAR.

References

- [1] World Health Organization, Global Tuberculosis Report 2021, 2021.
- [2] Y. Lan *et al*, Int. J. Pharm, 2014;94(6):678-689.
- [3] D.K.W. Man et al, mSphere, 2018;3(4):e00218-18.